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Background

• Fuel pool fire

– Two dimensional fire (class B fire)

• Class B foams

– Filming foams
• Aqueous Film Forming Foams (AFFF)

• AFFF contains water and fluorinated 
surfactant

– Lowers surface tension
• Lays on less dense liquid hydrocarbon pool

• Two current issues





Background – Current Issues

• Application of AFFF

– Formation of a film layer

• Film layer suppresses evaporation

– Combustion of fuel vapors

• Vapor suppression not constant over time

– Studied by Leonard and Williams

• “Burnback” experiments



Background – “Burnback” test 

importance

• Initial fire suppressed

– Unseen flame or ember

• Portion of foam layer compromised away from 

flame

• Ability of foam layer to 

– maintain its integrity in presence of an open flame

– suppress fuel vapors to prevent “ghosting”

• Failure will lead to re-ignition of previously 

contained fire



“Ghosting”



Background – Current Issues

• Fluorinated film forming foams

– Environmentally unfriendly

– Toxic

• Process of being replaced

– Satisfactory replacement not found yet

• Vital to understand:

– Performance of fluorinated product

– Performance of new product



Laboratory Experiments

• Film layer studied by Leonard

• Foam and film layer studied by Williams 

• Experimental design 

• Vapor concentration measured over time

– Initial suppression

– Increase in vapor concentration 

– Steady state reached after certain time

• Suggested diffusion as a possible 
mechanism



The Domain

Fuel Pool

Aqueous 

Film or 

Foam Layer 

(Domain 1)

Domain 2



The Model

• Designed to match laboratory experiments of Leonard 

and Williams

• Variables needed: velocities and concentration of fuel 

vapors

• Separation into two domains

• Cylindrical coordinates

• Aqueous layer assumed to be stationary

• Aqueous layer assumed to be a continuum

• Binary Diffusion coefficient assumed constant

– Project Goal: Match diffusion coefficient in domain 1 to steady 

state results
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Equations
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• Diffusion term different for the two domains



Algorithm – Species Fraction (3)

• Upwind Differencing from Pozrikidis for 
Convective – Diffusion Equation

• Upwind Difference for Convective Terms

• Centered Differencing for Diffusion Terms

• To find a bi-section method will be used
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Algorithm – Stream Function and 

Vorticity

• Substitute                                         in (2) and (3)

• Obtain
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Algorithm – Stream Function and 

Vorticity

• Algorithm from Pozrikidis to solve (4) and 

(5)

– Find vorticity based on velocity fields

– Update vorticity

• Upwind Differencing Scheme 

– Solve for Poisson eq. for stream function

• Explicit point–successive over–relaxation iterative 

scheme

– Solve for velocity fields



The Model

• Validation

– Diffusion constant for fuel vapors in air known

– Comparison to a published result 

– Stagnation flow solution

• Application and Data

– Fuel vapor concentration data from film lab 

experiments

– Fuel vapor concentration data from foam and film 

lab experiments 

– Parametric tests 



The Model

• Platform and Language
– Fortran90
• Intel compiler

– MacBook Pro
• 2.4 GHz Intel Core 2 Duo

• 3 GB memory

• Deliverables
– Software package that finds diffusion coefficient for a 
fuel based off of concentration data

– Input data

– Coefficient and visualization results



Timeline

• October – November
– Code Upwind Differencing and Steam Function/ 
Vorticity Algorithms

– Stagnation flow solution from Leonard

• December – February
– Verify code against Fuel Vapor in Air data

• March – April
– Apply code to Film and Foam data

• May
– Prepare report and final presentation
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Questions?


