Modeling Local and Advective Diffusion of Fuel Vapors to Understand Aqueous Foams in Fire Fighting

Author: Andrew Brandon asbrando@math.umd.edu

Advisor: Dr. Ramagopal Ananth Naval Research Laboratory, Washington D.C. ramagopal.ananth@nrl.navy.mil

Outline

- Background of Issue
- Past and Current Laboratory Experiments
- Model
 - Domain
 - Equations
 - Algorithms
- Verification of Model
- Future Tests
- Timeline

Background

- Fuel pool fire
 - Two dimensional fire (class B fire)
- Class B foams
 - Filming foams
 - Aqueous Film Forming Foams (AFFF)
- AFFF contains water and fluorinated surfactant
 - Lowers surface tension
 - Lays on less dense liquid hydrocarbon pool
- Two current issues

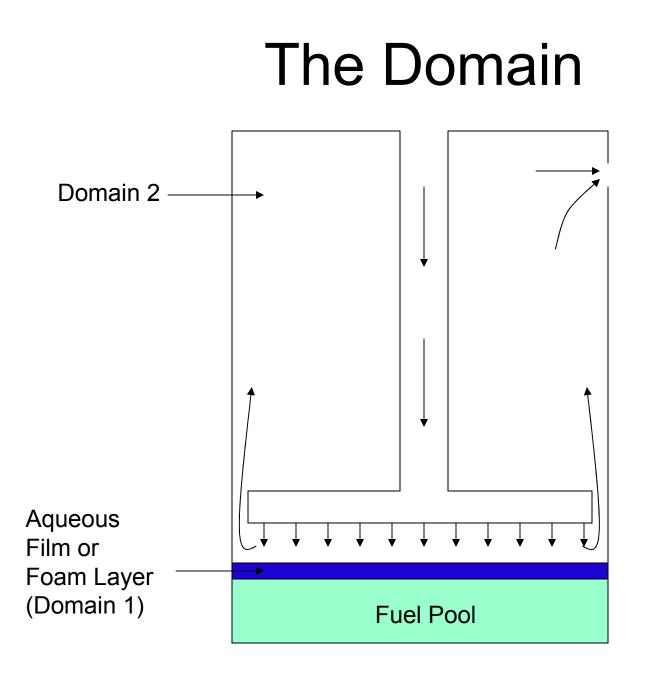
Background – Current Issues

- Application of AFFF
 - Formation of a film layer
- Film layer suppresses evaporation
 - Combustion of fuel vapors
- Vapor suppression not constant over time
 - Studied by Leonard and Williams
- "Burnback" experiments

Background – "Burnback" test importance

- Initial fire suppressed
 - Unseen flame or ember
- Portion of foam layer compromised away from flame
- Ability of foam layer to
 - maintain its integrity in presence of an open flame
 - suppress fuel vapors to prevent "ghosting"
- Failure will lead to re-ignition of previously contained fire

"Ghosting"



Background – Current Issues

- Fluorinated film forming foams
 - Environmentally unfriendly
 - Toxic
- Process of being replaced
 - Satisfactory replacement not found yet
- Vital to understand:
 - Performance of fluorinated product
 - Performance of new product

Laboratory Experiments

- Film layer studied by Leonard
- Foam and film layer studied by Williams
- Experimental design
- Vapor concentration measured over time
 - Initial suppression
 - Increase in vapor concentration
 - Steady state reached after certain time
- Suggested diffusion as a possible mechanism

The Model

- Designed to match laboratory experiments of Leonard and Williams
- Variables needed: velocities and concentration of fuel vapors
- Separation into two domains
- Cylindrical coordinates
- Aqueous layer assumed to be stationary $\Rightarrow u = w = 0$
- Aqueous layer assumed to be a continuum
- Binary Diffusion coefficient assumed constant
 - Project Goal: Match diffusion coefficient in domain 1 to steady state results

Equations

$$r:\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial r} + w\frac{\partial u}{\partial z} = -\frac{1}{\rho}\frac{\partial P}{\partial r} + \frac{\mu}{\rho}\left(\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial z^2}\right)$$
(1)

$$z:\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial r} + w\frac{\partial w}{\partial z} = -\frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\mu}{\rho}\left(\frac{\partial^2 w}{\partial r^2} + \frac{\partial^2 w}{\partial z^2}\right)$$
(2)

$$Y_{FV}:\frac{\partial Y_{FV}}{\partial t} + u\frac{\partial Y_{FV}}{\partial r} + w\frac{\partial Y_{FV}}{\partial z} = -D\left(\frac{\partial^2 Y_{FV}}{\partial r^2} + \frac{1}{r}\frac{\partial Y_{FV}}{\partial r} + \frac{\partial^2 Y_{FV}}{\partial z^2}\right)$$
(3)

• Diffusion term different for the two domains

Algorithm – Species Fraction (3)

- Upwind Differencing from Pozrikidis for Convective – Diffusion Equation
- Upwind Difference for Convective Terms
- Centered Differencing for Diffusion Terms

$$\frac{\partial f}{\partial t} + U \frac{\partial f}{\partial x} = \kappa \frac{\partial^2 f}{\partial x^2}$$
$$\frac{f_i^{n+1} - f_i^n}{\Delta t} + U \frac{f_i^n - f_{i-1}^n}{\Delta x} = \kappa \frac{f_{i+1}^n - 2f_i^n + f_{i-1}^n}{\Delta x^2}$$

• To find D a bi-section method will be used

Algorithm – Stream Function and Vorticity

- Substitute $u = \frac{-1}{r} \frac{\partial \psi}{\partial z}, w = \frac{1}{r} \frac{\partial \psi}{\partial r}$ in (2) and (3)
- Obtain

$$\nabla^{2}\psi = -\Omega$$

$$\frac{\partial\Omega}{\partial t} + u\frac{\partial\Omega}{\partial r} + w\frac{\partial\Omega}{\partial z} = \frac{\Omega u}{r} + \eta \left[\frac{1}{r}\frac{\partial\Omega}{\partial r} - \frac{\Omega}{r^{2}} + \frac{\partial^{2}\Omega}{\partial r^{2}} + \frac{\partial^{2}\Omega}{\partial z^{2}}\right]$$
(5)

Algorithm – Stream Function and Vorticity

- Algorithm from Pozrikidis to solve (4) and (5)
 - Find vorticity based on velocity fields
 - Update vorticity
 - Upwind Differencing Scheme
 - Solve for Poisson eq. for stream function
 - Explicit point–successive over–relaxation iterative scheme
 - Solve for velocity fields

The Model

- Validation
 - Diffusion constant for fuel vapors in air known
 - Comparison to a published result
 - Stagnation flow solution
- Application and Data
 - Fuel vapor concentration data from film lab experiments
 - Fuel vapor concentration data from foam and film lab experiments
 - Parametric tests

The Model

- Platform and Language
 - Fortran90
 - Intel compiler
 - MacBook Pro
 - 2.4 GHz Intel Core 2 Duo
 - 3 GB memory
- Deliverables
 - Software package that finds diffusion coefficient for a fuel based off of concentration data
 - Input data
 - Coefficient and visualization results

Timeline

- October November
 - Code Upwind Differencing and Steam Function/ Vorticity Algorithms
 - Stagnation flow solution from Leonard
- December February
 - Verify code against Fuel Vapor in Air data
- March April
 - Apply code to Film and Foam data
- May
 - Prepare report and final presentation

References

- 1. Ananth, R, and Farley, J.P. Suppression Dynamics of a Co-Flow Diffusion Flame with High Expansion Aqueous Foam. Journal of Fire Sciences. 2010
- 2. Bird, R.B., Stewart, W.E., and Lightfoot, E.N. *Transport Phenomena*. 1960
- 3. Leonard, J.T., and Burnett, J.C. Suppression of Fuel Evaporation by Aqueous Films of Flourochemical Surfactant Solutions. NRL Report 7247. 1974

References

- 4. Panton, R.L. Incompressible Flow. 1984
- 5. Pozrikidis, C. Introduction to Theoretical and Computational Fluid Dynamics. 1997
- Williams, B.A, Sheinson, R.S., and Taylor, J.C. *Regimes of Fire Spread Across an AFFF – Covered Liquid Pool*. NRL Report. 2010

References

7. Williams, B.A., Murray, T., Butterworth, C., Sheinson, R., Fleming, J. Whitehurst, C. and Farley, J. Extinguishment and Burnback Tests of Fluorinated and Fluorine-free Firefighting Foams with and without Film Formation. Suppression, Detection, and Signaling Research and **Applications- A Technical Working** Conference (SUPDET 2011), March 22-25, 2011. Orlando, Florida.

Questions?